

Circuit Diagrams

MK 9054N

Connection Terminals

Terminal designation	Signal designation
A1, A2	Auxiliary voltage
e, f	Voltage measuring input
$11,12,14$	1st changeover contact
$21,22,24$	2nd changeover contact
at MK 9054/1_- : Z1, Z2, Z3	remote potentiometer for response value

Safety Notes

Please observe when connecting a remote potentiometer to MK 9054N/1_:

 Measuring circuit and remote potentiometer not galvanically separated. The remote potentiometer on terminals $\mathrm{Z} 1, \mathrm{Z2}, \mathrm{Z} 3$ is related to terminal "e". Therefore "e" should be connected to "N", "-" or GND, so that the remote potentiometer is not connected to the Phase voltage. The remote potentiometer has to be connected volt- and ground-free.
Your Advantages

- Protection against defect by overvoltage
- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60255-1, IEC/EN 60947-1
- to: monitor DC and AC
- BA 9054 with measuring ranges from 15 mV to 1000 V
- MK 9054N with measuring ranges from 15 mV to 500 V
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between Auxiliary Circuit - measuring ciruit
- Auxiliary supply AC/DC; BA 9054 with AC
- BA 9054 optionally with start-up delay (MK = standard)
- with time delay, up to max. 100 sec
- BA 9054 optionally with safe separation to IEC/EN 61140
- MK 9054N optionally with remote potentiometer
- As option with manual reset
- Option with fixed settings possible
- LED indicators for operation and contact position
- MK 9054N as option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width BA 9054: 45 mm

Width MK 9054N: 22.5 mm
Approvals and Markings

Applications

- Monitoring voltage in AC or DC systems
- For industrial and railway applications

Function

The relays measure the arithmetic mean value of the rectified measuring voltage. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overvoltage relays but can also be used for undervoltage detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay $t_{\text {a }}$ operates only when connecting the auxiliary supply. The response delay t_{v} is active after exceeding a response value. On overvoltage relays the delay is active when the voltage goes over the tripping value, on undervoltage relays when the voltage drops below the hysteresis value.

Indicators

green upper LED:
yellow lower LED:
on, when auxiliary supply connected on, when output relay acitvated

Function Diagram without Start-up Delay

BA9054/013
BA9054/023 BA9054/083

used as undervoltage relay

M6782_g

Function Diagram with Start-up Delay

Version BA 9054/_1_: 2 changeover contacts
Version BA 9054/_20, /_21, /_22, /_23, /_24: 1 changeover contact, measuring range ≥ 70... 700 V
At version BA 9054/6__ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data

Input (e, f)

BA 9054 with 1 Measuring range for $A C$ a n d $D C$			
Measuring range ${ }^{1)}$		internal resistance	max. permissible contin. voltage
AC	DC	$20 \mathrm{k} \Omega$	10 V
$6 \ldots 60 \mathrm{mV}$	$5.4 \ldots 54 \mathrm{mV}$	$40 \mathrm{k} \Omega$	100 V
$15 \ldots 150 \mathrm{mV}$	$13.5 \ldots 135 \mathrm{mV}$	$270 \mathrm{k} \Omega$	250 V
$50 \ldots 500 \mathrm{mV}$	$45 \ldots 450 \mathrm{mV}$	200 V	
$0.5 \ldots 5 \mathrm{~V}$	$0.45 \ldots 4.5 \mathrm{~V}$	$500 \mathrm{k} \Omega$	300 V
$1 \ldots 10 \mathrm{~V}$	$0.9 \ldots 9.0 \mathrm{~V}$	$1 \mathrm{M} \Omega$	$300 \mathrm{~V}^{2)}$
$5 \ldots 50 \mathrm{~V}$	$4.5 \ldots 45 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$25 \ldots 250 \mathrm{~V}$	$22.5 \ldots 225 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$50 \ldots 500 \mathrm{~V}$	$45 \ldots 450 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$700 \mathrm{~V}^{4)}$
$70 \ldots 700 \mathrm{~V}^{3)}$	$63 \ldots 630 \mathrm{~V}$	$3 \mathrm{M} \Omega$	$1000 \mathrm{~V}^{4)}$
$100 \ldots 1000 \mathrm{~V}^{3)}$	$90 \ldots 900 \mathrm{~V}$	$3 \mathrm{M} \Omega$	

1) DC or AC voltage $50 \ldots 5000 \mathrm{~Hz}$
(Other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{2}{3} \mathrm{~Hz}$ on request)
${ }^{2}$) at Overvoltage category II: 600 V
2) only with BA 9054/_20; /_21; /_22; /_23; /_24
(Version: 1 changeover contact)
${ }^{4)}$ at overvoltage category II: 1000 V
Please note:
Measuring ranges $6 \ldots 60 \mathrm{mV}$ only available at variant BA 9054/08_ (Using only for current sensing via shunt!)

MK 9054N with 1 Measuring range for AC a n d DC			
Measuring range ${ }^{1)}$		internal resistance	max. permissible contin. voltage
AC	DC	$20 \mathrm{k} \Omega$	10 V
$6 \ldots 60 \mathrm{mV}$	$5.4 \ldots 54 \mathrm{mV}$	$40 \mathrm{k} \Omega$	100 V
$15 \ldots 150 \mathrm{mV}$	$13.5 \ldots 135 \mathrm{mV}$	$270 \mathrm{k} \Omega$	250 V
$50 \ldots 500 \mathrm{mV}$	$45 \ldots 450 \mathrm{mV}$	$500 \mathrm{k} \Omega$	300 V
$0.5 \ldots 5 \mathrm{~V}$	$0.45 \ldots 4.5 \mathrm{~V}$	500 V	
$1 \ldots 10 \mathrm{~V}$	$0.9 \ldots 9.0 \mathrm{~V}$	$1 \mathrm{M} \Omega$	300
$5 \ldots 50 \mathrm{~V}$	$4.5 \ldots 45 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$25 \ldots 250 \mathrm{~V}$	$22.5 \ldots 225 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$50 \ldots 500 \mathrm{~V}$	$45 \ldots 450 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$

1) DC or AC voltage $50 \ldots 5000 \mathrm{~Hz}$
(Other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{1}{3} \mathrm{~Hz}$ on request)
${ }^{2)}$ Not suitable for 400 / 690 V-mains (systems)

Please note:

To avoid measuring mistakes, on units with mV input the input must always be terminated. In addition screened wires should be used..

Measuring ranges $6 \ldots 60 \mathrm{mV}+15 \ldots 150 \mathrm{mV}$
(Using only for current sensing via shunt!)

Measuring principle:
Adjustment:

Temperature influence:
arithmetic mean value
The AC-devices can also monitor DCvoltage. The scale offset in this case is
$\left(\bar{U}=0.90 U_{\text {eff }}\right)$
< $0.05 \% / \mathrm{K}$

Technical Data

Setting Ranges

Setting
Response value:
Hysteresis
at AC:
at DC:
Accuracy:
Response value at
Potentiometer right stop (max): $0 \ldots+8 \%$
Potentiometer left stop (min): $\quad-10 \ldots .+8 \%$
Repeat accuracy: $\leq \pm 0.5 \%$
Recovery time
at devices with manual reset
(Reset by braking
of the auxiliary voltage)
BA 9054/6_ _; MK 9054N/6_ _: $\leq 1 \mathrm{~s}$
(dependent to function and auxiliary voltage)
infinite variable $0.1 U_{N} \ldots 1 U_{N}$ relative scale
infinite variable $0.5 \ldots 0.98$ of setting value infinite variable $0.5 \ldots 0.96$ of setting value
infinite variable at logarithmic scale from $0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}, 0 \ldots 100 \mathrm{~s}$ setting $0 \mathrm{~s}=$ without time delay
Start-up delay t_{a} :
BA 9054/1 _ _:

MK 9054N:

Time delay t_{v} :

Auxiliary Circuit BA 9054 and MK 9054N

Auxiliary voltage $\mathbf{U}_{\mathbf{H}}(\mathrm{A} 1, \mathrm{~A} 2)$
BA 9054, Nominal voltage:
Voltage range:
Nominal frequency:
Frequency range:
AC 24, 42, 110, 127, 230, 400 V

Frequency range:
Nominal consumption
$1 \ldots 20 \mathrm{~s} ; 1 \ldots 60 \mathrm{~s} ; 1 \ldots 100 \mathrm{~s}$, adjustable on logarithmic scale. t_{a} is started when the supply voltage is connected. During elapse of time the output contact is in good state $0.1 \ldots 20 \mathrm{~s} ; 0.1 \ldots 60 \mathrm{~s} ; 0.1 \ldots 100 \mathrm{~s}$

BA 9054, MK 9054N:		
Nominal voltage	Voltage range	Frequency range
AC/DC $24 \ldots 80 \mathrm{~V}$	AC $18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
$\mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}$	AC $40 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $40 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$

BA 9054		
Nominal voltage	Voltage range	Frequency range
DC 12 V	DC $10 \ldots 18 \mathrm{~V}$	battery voltage

Nominal consumption: $\quad 4 \mathrm{VA} ; 1.5 \mathrm{~W}$ at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

Output

Contacts

BA 9054:
MK 9054N:
Thermal current $I_{\text {th }}$
BA 9054: 2×5 A
MK 9054N: $\quad 2 \times 4$ A
Switching capacity
BA 9054
to AC 15:
NO contact:
NC contact:
2 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V
1.5 A / AC 230 V
$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60 947-5-1
to AC 15:
BA 9054, MK 9054N
to DC 13:
IEC/EN 60 947-5-1 IEC/EN 60 947-5-1
5×10^{5} switching cycles
10^{5} switching cycles
6A gG (gL)
IEC/EN 60 947-5-1
50×10^{6} switching cycles
30×10^{6} switching cycles

Technical Data

General Data

Operating mode: Temperature range: Operation:

Storage:
Altitude:
Clearance and creepage distances
rated impulse voltage / pollution degree BA 9054:
MK 9054N
EMC
Electrostatic discharge:
HF irradiation
$80 \mathrm{MHz} . . .1 \mathrm{GHz}$:
$1 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}$:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
BA 9054:
MK 9054N
Screw terminals (integrated):

Insulation of wires
or sleeve length:
Plug in with screw terminals
max. cross section for connection:

Insulation of wires or sleeve length:
Plug in with cage clamp terminals max. cross section for connection:
min. cross section for connection: Insulation of wires or sleeve length:
Wire fixing
BA 9054:
MK 9054N:

Stripping length:
Fixing torque:
Mounting:
Weight
BA 9054:
MK 9054N:

Continuous operation
$-40 \ldots+60^{\circ} \mathrm{C}$
(higher temperature with limitations
on request)
$-40 \ldots+70^{\circ} \mathrm{C}$
< 2.000 m

$6 \mathrm{kV} / 2$	IEC 60 664-1
$4 \mathrm{kV} / 2$	IEC 60 664-1
8 kV (air)	IEC/EN 61 000-4-2
$20 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
4 kV	IEC/EN 61 000-4-4
2 kV	IEC/EN 61 000-4-5
4 kV	IEC/EN 61 000-4-5
10 V	IEC/EN 61 000-4-6
Limit value class B	EN 55 011
IP 40	IEC/EN 60 529
IP	

P 20 IEC/EN 60529
Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency $10 \ldots 55 \mathrm{~Hz}$
40/060 / $04 \quad$ IEC/EN 60 068-1
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
or $2 \times 2.5 \mathrm{~mm}^{2}$ solid
8 mm
$1 \times 2.5 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)

8 mm
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
$0.5 \mathrm{~mm}^{2}$
$12{ }^{ \pm 0.5} \mathrm{~mm}$
Plus-minus terminal screws M3.5 with self-lifting clamping piece IEC/EN 60 999-1 Plus-minus terminal screws M3.5 box terminals with wire protection or cage clamp terminals
10 mm
0.8 Nm

DIN-rai
IEC/EN 60715
AC-device: $\quad 280 \mathrm{~g}$
AC/DC-fdevice: 200 g
150 g

Dimensions

Width x height x depth

BA 9054:
MK 9054N:

Classification to DIN EN 50155 for BA 9054

Vibration and
shock resistance:
Ambient temperature:

Category 1, Class B
IEC/EN 61373
T1, T2 compliant
T3 and TX with operational limitations

Protective coating of the PCB: No

UL-Data

Auxiliary voltage $\mathbf{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)$
BA 9054:
AC 24, 42, 48, 110, 115, 120 V
Thermal current I_{th} :
BA 9054: 2×5 A

MK 9054N: 2×4 A
Clearance and creepage distances
BA 9054, MK 9054N: 4 kV /
HF irradiation
BA 9054 (80 MHz ... 2.7 GHz) $10 \mathrm{~V} / \mathrm{m}$
$\begin{array}{ll}\text { Switching capacity: } & \text { Pilot duty B150 } \\ \text { Ambient temperature: } & -40 \ldots+60^{\circ} \mathrm{C}\end{array}$
Ambient temperature: - 40 ... + 60

Technical data that is not stated in the UL-Data, can be found in the technical data section.

CCC-Data

Switching capacity

to AC 15:	$1.5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Types

BA 9054/010 AC 25 ... 250 V AC 230 V
Article number
0053639

- for Overvoltage monitoring
- Measuring range:

AC 25 ... 250 V

- Auxiliary voltage U_{H} :

AC 230 V
$0 . . .20 \mathrm{~s}$

- Time delay t_{v} by U_{an}

45 mm
BA 9054/012 AC 25 ... 250 V AC 230 V
Article number: 0053711

- for Undervoltage monitoring
- Measuring range:

AC $25 \ldots 250 \mathrm{~V}$

- Auxiliary voltage U_{H} : AC 230 V
- Time delay t_{v} by U_{ab} : 0 ... 20 s
- Width:

45 mm
MK 9054N.12/010 AC $25 \ldots 250 \mathrm{~V}$ AC/DC $80 \ldots 230 \mathrm{~V} \mathrm{t}_{\mathrm{v}} 0 \ldots 20 \mathrm{~s} \mathrm{t}_{\mathrm{a}} 0.1 \ldots 20 \mathrm{~s}$
Article number:

- for Overvoltage monitoring
- Measuring range: AC $25 \ldots 250 \mathrm{~V}$
- Auxiliary voltage U_{H} : AC/DC $80 \ldots 230 \mathrm{~V}$
- Time delay t_{v} by U_{an} : $0 \ldots 20 \mathrm{~s}$
- Start up delay t_{a} an: $\quad 0.1 \ldots 20 \mathrm{~s}$
- Width:
22.5 mm

Ordering Example for Variants

BA 9054

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp (PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Accessories

AD 3: \quad| Remote potentiometer 470 kW |
| :--- |
| |
| |
| Article number: 0050174 |

Setting

Example:
Voltage relay BA 9054 / MK 9054N AC 25 ... 250 V
AC according to type plate:
i.e. the unit is adjusted to AC voltage
$25 \ldots 250 \mathrm{~V}=$ measuring range
Response value AC 150 V
Hysteresis AC 75 V
Settings:

upper potentiometer:	0.6	$(0.6 \times 250 \mathrm{~V}=150 \mathrm{~V})$
lower potentiometer:	0.5	$(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})$

The AC-devices can also monitor DC voltage. The scale offset in this case is: $\overline{\mathrm{U}}=0.9 \times \mathrm{U}_{\text {eff. }}$

AC $25 \ldots 250 \mathrm{~V}$ is equivalent to $\mathrm{DC} 22.5 \ldots 225 \mathrm{~V}$
Response value DC 150 V
Hysteresis DC 75 V
Settings:
$\begin{array}{lll}\text { upper potentiometer: } & 0.66 & (0.66 \times 225 \mathrm{~V}=150 \mathrm{~V}) \\ \text { lower potentiometer: } & 0.5 & (0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})\end{array}$

$$
0.5 \quad(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})
$$

Time delay of measuring circuit
X on: Measured value rises $F=\frac{\text { Meas. value (after rise of meas. value) }}{\text { Setting value }}$
X off: Measured value drops $F=\frac{\text { Meas. value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}$
The diagram shows the typical delay of a standard devices depending on the measured values " X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter.
The total reaction time of the device results from the adjustable delay t_{v} and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overvoltage detection with BA9054/010):
Adjusted setting value X on $=230 \mathrm{~V}$.
Caused by a missing neutral the voltage rises suddenly to 400 V
$F=\frac{\text { Measured value (after rise of meas. value) }}{\text { Setting value }}=\frac{400 \mathrm{~V}}{230 \mathrm{~V}}=1,74$
Reading from the diagram:
The output relay switches on after 64 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

Example for "X off" (undervoltage detection with BA9054/012):
Adjusted hysteresis setting value is 100 V .
Caused by a broken wire the voltage drops suddenly from 230 V to 0 V .
$F=\frac{\text { Measured value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}=\frac{230 \mathrm{~V}}{100 \mathrm{~V}}=2,3$
Reading from the diagram:
The output relay switches off after 70 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

